Abstract

Recently, the interest in spiking neural networks (SNNs) remarkably increased, as up to now some key advances of biological neural networks are still out of reach. Thus, the energy efficiency and the ability to dynamically react and adapt to input stimuli as observed in biological neurons is still difficult to achieve. One neuron model commonly used in SNNs is the leaky-integrate-and-fire (LIF) neuron. LIF neurons already show interesting dynamics and can be run in two operation modes: coincidence detectors for low and integrators for high membrane decay times, respectively. However, the emergence of these modes in SNNs and the consequence on network performance and information processing ability is still elusive. In this study, we examine the effect of different decay times in SNNs trained with a surrogate-gradient-based approach. We propose two measures that allow to determine the operation mode of LIF neurons: the number of contributing input spikes and the effective integration interval. We show that coincidence detection is characterized by a low number of input spikes as well as short integration intervals, whereas integration behavior is related to many input spikes over long integration intervals. We find the two measures to linearly correlate via a correlation factor that depends on the decay time. Thus, the correlation factor as function of the decay time shows a powerlaw behavior, which could be an intrinsic property of LIF networks. We argue that our work could be a starting point to further explore the operation modes in SNNs to boost efficiency and biological plausibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.