Abstract

We developed an accelerated Genetic Algorithm (GA) system based on the cooperation of a field-programmable gate array (FPGA) and the optimized parameters that enables fast light focusing through scattering media. Starting at the searching space, which influences the convergence of the optimization algorithms, we manipulated the mutation rate that defines the number of mutated pixels on the spatial light modulator to accelerate the GA process. We found that the enhanced decay ratio of the mutation rate leads to a much faster convergence of the GA. A convergence-efficiency function was defined to gauge the tradeoff between the processing time and the enhancement of the focal spot. This function allowed us to adopt the shorter iteration number of the GA that still achieves applicable light focusing. Furthermore, the accelerated GA configuration was programmed in FPGA to boost processing speed at the hardware level. It shows the ability to focus light through scattering media within a few seconds, 150 times faster than the PC-based GA. The processing cycle could be further promoted to a millisecond-level with the advanced FPGA processor chips. This study makes the evolution-based optimization approach adaptable in dynamic scattering media, showing the capability to tackle wavefront shaping in biological material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.