Abstract
The pitching axis is the main axis of a satellite camera and is used to control the pitch posture of satellite cameras. A control strategy based on extended state observer (ESO) is designed to obtain a fast response speed and highly accurate pitching axis control system and eliminate disturbances during the adjustment of pitch posture. First, a sufficient condition of stabilization for ESO is obtained by analyzing the steady-state error of the system under step input. Parameter tuning and disturbance compensation are performed by ESO. Second, the ESO of speed loop is designed by the speed equation of the pitching axis of satellite cameras. The ESO parameters are obtained by pole assignment. By ESO, the original state variable observes the motor angular speed and the extended state variable observes the load torque. Therefore, the external load disturbances of the control system are estimated in real time. Finally, simulation experiments are performed for the system on the cases of nonload starting, adding external disturbances on the system suddenly, and the load of system changing suddenly. Simulation results show that the control strategy based on ESO has better stability, adaptability, and robustness than the PI control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.