Abstract

Abstract Spectroscopic ellipsometry (SE) has been used to depth profile the optical properties and the microstructural inhomogeneities present in ferroelectric thin films. It was found that many film deposition techniques engender remanent microstructural defects, including voids distributed inhomogeneously throughout the film thickness and surface roughness. In this paper, depth profile information from SE studies is combined with mathematical modeling to describe the way in which microstructural inhomogeneities influence the observed electrical and optical properties of ferroelectric thin films. Many of the differences between the electrical properties of thin films and bulk ferroelectrics of the same composition can be attributed to such defects. In particular, it was shown that high values for the coercive field, low values for the remanent polarization and the dielectric constant, and the loss of the marked maximum in the dielectric constant as a function of temperature can be attributed in part to c...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call