Abstract

The undoped zinc oxide thin films were grown on quartz substrate at a substrate temperature of 750 °C by radio frequency magnetron sputtering and post annealed at different temperatures (600–800 °C) for a period of 30 min. The influence of annealing temperature on the structure, electrical and optical properties of undoped ZnO thin films was investigated by X-ray diffraction, Hall-effect, photoluminescence and optical transmission measurements. Results indicated that the electrical properties of the thin films were extremely sensitive to the annealing temperature and the conduction type could be changed dramatically from n-type to p-type, and finally changed to weak p-type when the temperature increased from 600 to 800 °C. Electrical and photoluminescence results indicate that native defects, such as oxygen and zinc vacancies, could play an important role in determining the conductivity of these nominally undoped ZnO thin films. The conversion of the conduction type was attributed to the competition between Zn vacancy acceptor and oxygen vacancy and interstitial Zn donors. At an intermediate annealing temperature of 750 °C, the film behaves the best p-type characteristic, which has the lowest resistivity of 12 Ωcm, hall mobility of 2.0 cm2/V s and carrier concentration of 1.5 × 1017 cm−3. The photoluminescence results indicated that the Zn vacancy might be responsible for the intrinsic better p-type characteristic in ZnO thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call