Abstract
A combination of spectroscopies and DFT calculations have been used to define the electronic structures of two crystallographically defined Cu(II)-phenolate complexes. These complexes differ in the orientation of the phenolate ring which results in different bonding interactions of the phenolate donor orbitals with the Cu(II), which are reflected in the very different spectroscopic properties of the two complexes. These differences in electronic structures lead to significant differences in DFT calculated reactivities with oxygen. These calculations suggest that oxygen activation via a Cu(I) phenoxyl ligand-to-metal charge transfer complex is highly endergonic (>50 kcal/mol), hence an unlikely pathway. Rather, the two-electron oxidation of the phenolate forming a bridging Cu(II) peroxoquinone complex is more favorable (11.3 kcal/mol). The role of the oxidized metal in mediating this two-electron oxidation of the coordinated phenolate and its relevance to the biogenesis of the covalently bound topa quinone in amine oxidase are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.