Abstract
In this paper, we scale the quasiNewton equation and propose a spectral scaling BFGS method. The method has a good selfcorrecting property and can improve the behavior of the BFGS method. Compared with the standard BFGS method, the single-step convergence rate of the spectral scaling BFGS method will not be inferior to that of the steepest descent method when minimizing an n-dimensional quadratic function. In addition, when the method with exact line search is applied to minimize an n-dimensional strictly convex function, it terminates within n steps. Under appropriate conditions, we show that the spectral scaling BFGS method with Wolfe line search is globally and R-linear convergent for uniformly convex optimization problems. The reported numerical results show that the spectral scaling BFGS method outperforms the standard BFGS method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have