Abstract

An efficient descent method for unconstrained optimization problems is line search method in which the step size is required to choose at each iteration after a descent direction is determined. There are many ways to choose the step sizes, such as the exact line search, Armijo line search, Goldstein line search, and Wolfe line search, etc. In this paper we propose a new inexact line search for a general descent method and establish some global convergence properties. This new line search has many advantages comparing with other similar inexact line searches. Moreover, we analyze the global convergence and local convergence rate of some special descent methods with the new line search. Preliminary numerical results show that the new line search is available and efficient in practical computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.