Abstract
The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.