Abstract
We consider the non-stationary flow of a micropolar fluid in a thin channel with an impervious wall and an elastic stiff wall, motivated by applications to blood flows through arteries. We assume that the elastic wall is composed of several layers with different elastic characteristics and that the domains occupied by the two media are infinite in one direction and the problem is periodic in the same direction. We provide a complete variational analysis of the two dimensional interaction between the micropolar fluid and the stratified elastic layer. For a suitable data regularity, we prove the existence, the uniqueness and the regularity of the solution to the variational problem associated to the physical system. Increasing the data regularity, we prove that the fluid pressure is unique, we obtain additional regularity for all the unknown functions and we show that the solution to the variational problem is solution for the physical system, as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.