Abstract
A time discretization method is called strongly stable (or monotone), if the norm of its numerical solution is nonincreasing. Although this property is desirable in various of contexts, many explicit Runge-Kutta (RK) methods may fail to preserve it. In this paper, we enforce strong stability by modifying the method with superviscosity, which is a numerical technique commonly used in spectral methods. Our main focus is on strong stability under the inner-product norm for linear problems with possibly non-normal operators. We propose two approaches for stabilization: the modified method and the filtering method. The modified method is achieved by modifying the semi-negative operator with a high order superviscosity term; the filtering method is to post-process the solution by solving a diffusive or dispersive problem with small superviscosity. For linear problems, most explicit RK methods can be stabilized with either approach without accuracy degeneration. Furthermore, we prove a sharp bound (up to an equal sign) on diffusive superviscosity for ensuring strong stability. For nonlinear problems, a filtering method is investigated. Numerical examples with linear non-normal ordinary differential equation systems and for discontinuous Galerkin approximations of conservation laws are performed to validate our analysis and to test the performance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have