Abstract

Recently, prototype MOEM tunable Fabry-Perot filters operating from 400 to 800 nm were fabricated under a program to design miniature hyperspectral imagers operating from the visible to the longwave infrared. The filter design uses two semitransparent 30 nm thick silver-film mirrors, one fixed and the other moving, on a low-cost thin commercial quartz substrate. The moving mirror is supported by three leaf spring arms, which are fabricated by wet etching of the quartz substrate. The tuning of the transmitted wavelength of light from the filter is achieved by electrostatically actuating the moving mirror to vary the distance between the two mirrors. The size of the device is 18×24 mm2. The fixed part has a 6 mm diameter mirror and three electrodes to apply voltages, and the moving mirror is used as a ground electrode. Au bumps deposited on both parts control the initial air gap distance, and an Au-Au bonding is used to bond the two parts together. The spectral imaging performance of the MOEM filter is characterized using a spectrally tunable source and a CCD camera with suitable optics. The authors present a brief description of the filter, its characteristics, spectral imaging characterization experiment and results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.