Abstract

Biomedical spectral imaging is a non-invasive, non-destructive method, and has an important role in melanoma detection and all skin lesions monitoring during their various stages. In addition to spatial information, it contains spectral information that describes structure such as melanin content, and melanoma thickness, which, very well improve the sensitivity and specificity of melanoma detection. This article aims to describe the design of a multispectral imaging system that utilizes Artificial Neural Networks and Genetic Algorithm (Artificial Intelligence) for spectral images classification, in order to reduce the processing time of spectral images, memory and cost of the system. All system (Hardware and Software) works as an automatic detection system for malignant melanoma, which identifies malignant melanoma and common (benign) nevi by using wavelength scanning method with; CCD camera, filters wheel, and only eight optical filters range from 430nm to 620nm. 47 study cases were imaged. Good results were obtained: the sensitivity 91.67% and the specificity 91.43%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.