Abstract
We present a method to couple surface plasmon polariton (SPP) guiding mode into dielectric-loaded SPP waveguide (DLSPPW) devices with spectral and mode selectivity. The method combined a transmission-mode near-field spectroscopy to excite the SPP mode and a leakage radiation optical microscope for direct visualization. By using a near-field fiber tip, incident photons with different wavelengths were converted into SPPs at the metal/dielectric interface. Real-time SPP radiation images were taken through leakage radiation images. The wavelength-dependent propagation lengths for silver- and gold-based DLSPPWs were measured and compared. It confirms that silver-based SPP has a propagation length longer than a gold-based one by 1.25, 1.38, and 1.52 times for red, green, and blue photons. The resonant coupling as a function of wavelength in dual DLSPPWs was measured. The coupling lengths measured from leakage radiation images were in good agreement with finite-difference time domain simulations. In addition, the propagation profile due to multi-SPP modes interference was studied by changing position of the fiber tip. In a multimode DLSPPW, SPP was split into two branches with a gap of 2.237 μm when the tip was at the center of the waveguide. It became a zigzag profile when the SPP was excited at the corner of the waveguide.
Highlights
Surface plasmon polariton (SPP) waveguides allow electromagnetic wave propagating along metal-dielectric interface with a feature size smaller than optical wavelength
We present a near-field excitation system (NFES) to excite the SPP modes
To maintain the optical near-field excitation, the distance between the fiber tip and dielectric-loaded SPP waveguide (DLSPPW) was controlled by shear-force feedback system and tuning-fork detection method
Summary
Surface plasmon polariton (SPP) waveguides allow electromagnetic wave propagating along metal-dielectric interface with a feature size smaller than optical wavelength. Due to the Ohmic loss of the metal, the propagation length of conventional SPP mode is limited to few microns. There are increasing interests in designing SPP waveguides with a longer propagation length [1,2,3]. A simple way to increase the SPP length and confine light in subwavelength region is to coat a submicron dielectric strip onto the silver or gold thin film; such dielectric-loaded SPP waveguide (DLSPPW) [4] can increase the length up to tens of microns. The launching position of SPPs is fixed at the end of waveguide, and the focused spot is limited to the diffraction. The launch condition of the SPP mode is hard to be controlled. The scanning near-field optical measurement is a time-consuming process
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have