Abstract

Using time-resolved photoluminescence spectroscopy, we analyze single and multiexciton emission energies and decay dynamics of CdS/ZnSe core/shell nanocrystals (NCs). The NCs exhibit a characteristic type-II band alignment that leads to spatially separated charges; this effect is at the origin of long radiative exciton lifetimes, repulsive biexciton interaction energies, and reduced Auger recombination efficiencies. We determine these properties as a function of ZnSe shell thickness and find that the exciton emission energies and the decay times depend little on this parameter. In contrast, the spectral and dynamic properties of biexcitons vary strongly with the shell thickness. The considerable shell dependence of the biexciton decay lets us conclude that the associated Auger process involves the excitation of holes localized in the ZnSe shell. In NCs with thick shells, the large blue shift of the biexciton emission energy is mainly caused by Coulomb repulsion between electrons localized in the CdS core. The different sensitivity of exciton and multiexciton characteristics on the ZnSe shell thickness provides a unique opportunity to tune them independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call