Abstract

Femtosecond time-resolved absorption and picosecond time-resolved emission studies have been carried out to study the indirect type exciton of CdS/ZnSe core/shell quantum dots (QDs). The CdS/ZnSe core/shell QD samples are synthesized with increasing thickness of ZnSe shell on CdS core QDs. In these CdS/ZnSe core/shell samples, a new energy band lower than the energy gap of both the CdS core and ZnSe shell has been observed and attributed to indirect bandgap transitions from the valence band of the ZnSe shell to the conduction band of the CdS core. The transient PL studies have revealed that the indirect type exciton, e(CdS)/h(ZnSe) due to photoexcitation of this low-energy band, endures less carrier trapping than selective excitation of the CdS core and charge transfer in the staggered photoexcited state. Femtosecond transient absorption studies have revealed that carrier trapping is as fast as 100 fs and interfacial charge recombination slows down with increasing ZnSe shell thickness on the CdS QD in CdS...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.