Abstract
By performing spectroscopic single-particle measurements at cryogenic temperatures over the course of hours, we study both the spectral diffusion as well as the diffusion of the decay rates of the fluorescence emission of core/shell CdSe/CdS dot/rod nanoparticles. A special analysis of the measurements allows for a correlation of data for single neutral excitons only, undisturbed by the possible emission of other excitonic complexes. We find a nearly linear dependency of the fluorescence decay rate on the emission energy. The experimental data are compared to self-consistent model calculations within the effective-mass approximation, in which migrating point charges set onto the surface of the nanoparticles have been assumed to cause the temporal changes of optical properties. These calculations reveal a nearly linear relationship between the squared electron-hole wave function overlap, which is linked to the experimentally determined fluorescence rate, and the exciton emission energy. Within our model, single migrating surface charges are not sufficient to fully explain the measured rather broad ranges of emission rates and energies, while two-and in particular negative-surface charges close to the core of the DR induce large enough shifts. Importantly, for our nanoparticle system, the surface charges more strongly affect the hole wave function than the electron wave function and both wave functions are still localized within the dot-like core of the nanoparticle, showing that the type-I character of the band alignment between core and shell is preserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.