Abstract
Biochar has been proposed as a suitable biostimulant for the remediation of hydrocarbon contamination, and also has the potential to act as a carrier for hydrocarbonoclastic microorganisms which could bioaugment endogenous microbial communities. However, the evidence regarding the biostimulatory effects of biochars on hydrocarbon bioremediation is somewhat equivocal, possibly due to variability of the physicochemical properties of biochar and soil across studies. Here, we use standard biochars with defined properties produced from softwood pellets (SWP) and rice husk (RH) at pyrolysis temperatures of 550 °C or 700 °C to test the effects of biochar amendment on microbial community composition and hydrocarbon degradation in soil microcosms contaminated with diesel oil. Combining this approach for the first time with specific analysis of microbial community composition using amplicon sequence variants (ASVs), we find that oil contamination causes extreme short-term loss of soil microbial diversity, and highly-specific selection of a limited set of genera defined by 13 ASVs. Biochar ameliorates the short-term loss of diversity, and in the longer term (9 weeks), changes community composition in a type-specific manner. The majority of the 13 selected ASVs are further enriched on biochar particles, although SWP biochars perform better than RH biochar in enrichment of putative hydrocarbonoclastic Aquabacterium spp. However, complete degradation of normal (n) alkanes from the aliphatic hydrocarbon fraction is prevented in the presence of biochar amendment, possibly due to their adsorption onto the char surface. Furthermore, we show that putative hydrocarbon degraders released from diesel-amended soil can subsequently be enriched to high levels on SWP biochar particles in growth medium supplemented with diesel oil as the sole carbon source; these include selected ASVs representing the genera Rhodococcus, Aquabacterium, and Cavicella. This work suggests that use of biochar pre-enriched with endogenous, conditionally-rare hydrocarbon degrading bacteria is a promising strategy for bioaugmentation of diesel-contaminated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.