Abstract

AbstractA new intersensor calibration scheme is developed for the Defense Meteorological Satellite Program Special Sensor Microwave Imager (SSM/I) to correct its scan-angle-dependent bias, the radar calibration beacon interference on the F-15 satellite, and other intersensor biases. The intersensor bias is characterized by the simultaneous overpass measurements with the F-13 SSM/I as a reference. This sensor data record (SDR) intersensor calibration procedure is routinely running at the National Oceanic and Atmospheric Administration and is now used for reprocessing all SSM/I environmental data records (EDR), including total precipitable water (TPW) and surface precipitation. Results show that this scheme improves the consistency of the monthly SDR’s time series from different SSM/I sensors. Relative to the matched rain products from the Tropical Rainfall Measuring Mission, the bias of SSM/I monthly precipitation is reduced by 12% after intersensor calibration. TPW biases between sensors are reduced by 75% over the global ocean and 20% over the tropical ocean, respectively. The intersensor calibration reduces biases by 20.6%, 15.7%, and 6.5% for oceanic, land, and global precipitation, respectively. The TPW climate trend is 1.59% decade−1 (or 0.34 mm decade−1) for the global ocean and 1.39% decade−1 (or 0.63 mm decade−1) for the tropical ocean, indicating related trends decrease of 38% and 54%, respectively, from the uncalibrated SDRs. Results demonstrate the large impacts of this calibration on the TPW climate trend.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call