Abstract

Abstract The direct assimilation of brightness temperatures (Tb’s) from the Defense Meteorological Satellite Program Special Sensor Microwave Imager (SSM/I) and Special Sensor Microwave Water Vapor Profiler (SSM/T-2) in a one-dimensional variational (1D-Var) assimilation system is studied over the oceans. The control variables of the 1D-Var are the natural logarithm of specific humidity (lnq), near-surface wind speed (SWS), and cloud liquid water (CLW) path. Synthetic Tb’s, with and without noise added, were simulated and used to estimate the strength of the 1D-Var assimilation (weight given to the observations) and the information content of the Tb. In clear skies, it is shown that except for very dry profiles (TPW < 5–6 kg m−2) SSM/I Tb’s are superior to the SSM/T-2 Tb’s for the determination of total precipitable water (TPW). In the presence of clouds, the SSM/T-2 TPW retrievals are underestimated and the underestimation increases with CLW. Cloudy profiles should be filtered out. It is also shown that ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call