Abstract

Abstract River ice changes due to climate change significantly impact river hydrology, economies, and societies. This study employed the CMIP6 data and a river ice model to predict global river ice changes in response to climate change. Results indicate significant declines in global river ice due to global warming. With each 1°C increase in surface air temperature (SAT) in the future, river ice extent of ice-affected rivers decrease by 2.11 percentage points, and ice duration shorten by 8.4 days. Under the SSP2-4.5 scenario, the long-term mean SAT is 1.2°C to 2.5°C higher than in the near-term. This leads to a 1.9 percentage points to 4.4 percentage points decrease in global river ice extent, a 6.8 to 15.1-day decrease in river ice duration, and ice-free rivers increasing by up to 4.02%. The SSP5-8.5 scenario predicts a warmer long-term mean SAT, leading to greater reductions in river ice. Geographically, river ice loss is most notable in North America, Europe, Siberia, and the Tibetan Plateau (TIB), particularly in peninsular, coastal, and mountainous regions due to the combined effects of initial temperatures and temperature increases. Overall, the E.Europe (EEU) shows the greatest loss of river ice on average. Monthly analyses show the most substantial decreases from October to June, indicating pronounced seasonal variability. This study provides valuable insights for addressing challenges related to river ice changes in high-latitude and high-elevation regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.