Abstract

A scientific and logical tunnel entrance lighting environment is an important guarantee for the safety of drivers entering tunnels as well as an essential element for the sustainable development of the tunnel. At present, most of the highway tunnel entrance lighting environment focuses on the road surface luminance and does not consider the variation of correlated color temperatures (CCT) on the driver’s vision in the tunnel access zone. This study analyzes the temporal and spatial variation of the ambient CCT in the driver’s 20° field of view during the approach to the tunnel through field dynamic tests of existing tunnels in the Beijing area. As a result, the CCT received by the driver’s eyes when approaching the tunnel peaks at the midpoint of the tunnel access zone, after which it decreases slowly up to the tunnel portal. Moreover, a calculation model of the CCT outside the tunnel with the solar irradiance, the distance from the tunnel portal, and the CCT of tunnel interior lighting as the input parameters is established. The modeling methodology was validated in a new tunnel, and the calculation model’s average absolute error is within 5%, which could provide guidance for the selection of the tunnel interior lighting CCT and a basis for the design of intelligent control of sustainable lighting systems in tunnels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.