Abstract

Macroalgae are being consumed by a growing number of people as functional food. Therefore, they are intensively cultivated to meet the rising demand. Mariculture is a potential source of microplastics (MPs). However, as a potential source of microplastics, little is known regarding the MPs pollution in macroalgae of open sea macriculture. Here we investigated the MPs characteristics in macroalgae in three sections of Haizhou Bay, an important mariculture area in China, during Pyropia culture (Pyropia yezoensis) and non-culture periods (Ulva prolifera, Sargassum horneri, Cladophora sp., Undaria pinnatifida, Ulva pertusa). It was found that P. yezoensis during the culture period had higher MPs abundance (0.17 ± 0.08 particles g−1fresh weight) than other macroalgae (0.12 ± 0.09 particles g−1 fresh weight) during the non-culture period, particularly for the nearshore sections. There were more fiber MPs in P. yezoensis (90.43%) in culture period compared to macroalgae (84.46%) in non-culture period. Highly similar spectrum of plastics in culture gears and macroalgae was verified. Pyropia culture gears released about 1, 037 tons plastics into the environment annually and the MPs abundances in seawater during the culture and non-culture periods were 1.04 ± 0.32 and 1.86 ± 0.49 particles L−1, respectively. The gap of MPs abundance between the two periods can be attributed to the tremendous trapping by massive biomass of P. yezoensis during the culture period and the continuous plastic release during the non-culture period. This study indicates that culture gears of macroalgae could be an important MPs source and the MPs can be transferred to human by edible macroalgae, and meanwhile macroalgae may be ideal biomonitors for MPs pollution in seawater due to their unbiased trapping and immovability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call