Abstract

Microplastic (MP) pollution in oceans is an emerging environmental problem that poses ecological risks for marine ecosystems. Based on the abundance, distribution, and characteristics of microplastics (MPs) in surface water, sediment, and organisms, MP sources, pollution, trophic transfer, and ecological risk in Xiangshan Bay, an area of intensive mariculture in East China Sea, were assessed in this study. MPs were prevalent in the environment and organisms, with overall abundances at a low–medium level compared with the levels in the coastal areas. In water, MPs were more abundant in the inner bay (0.32 items m–3), which is a more significant source of MPs with intensive mariculture than the central (0.09 items m–3) and outer bays (0.07 items m–3). The narrow and land-enclosed inner bay, with weak hydrodynamics for water exchange, retained MPs, thus increasing their abundance. The ecological risk of MPs in water was at a low–moderate level. The MP abundance in sediment did not vary significantly among the three regions of the bay. The morphological characteristics and polymers of the MPs differed in sediment from those in water, which was related to their diverse environmental redistribution routes. MP abundance ingested by organisms were related to their biological features and foraging habits. Overall, fish ingested more MPs than crustaceans, bivalves, and cephalopods, while zooplankton ingested the minimal MPs. Filter feeders ingested less MPs, with a preference for smaller particles than predators. MPs did not show trophic transfer behavior in organisms. Additionally, MPs ingested by infauna showed similar morphological and chemical characteristics compared to sediment at the point of organism residence, whereas MPs ingested by pelagic species were dissimilar to those in surface water. Our findings provide information for understanding MP pollution, source tracing, trophic transfer, and ecological risk assessment in coastal ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.