Abstract

The 2005 Kashmir earthquake has triggered widespread landslides in the Himalayan mountains in northern Pakistan and surrounding areas, some of which are active and are still posing a significant risk. Landslides triggered by the 2005 Kashmir earthquake are extensively studied; nevertheless, spatio-temporal landslide susceptibility assessment is lacking. This can be partially attributed to the limited availability of high temporal resolution remote sensing data. We present a semi-automated technique to use the Sentinel-2 MSI data for co-seismic landslide detection, landslide activities monitoring, spatio-temporal change detection, and spatio-temporal susceptibility mapping. Time series Sentinel-2 MSI images for the period of 2016-2021 and ALOS PALSAR DEM are used for semi-automated landslide inventory map development and temporal change analysis. Spectral information combined with topographical, contextual, textural, and morphological characteristics of the landslide in Sentinel-2 images is applied for landslide detection. Subsequently, spatio-temporal landslide susceptibility maps are developed utilizing the weight of evidence statistical modeling with seven causative factors, i.e., elevation, slope, geology, aspect, distance to fault, distance to roads, and distance to streams. The results reveal that landslide occurrence increased from 2016 to 2021 and that the coverage of areas of relatively high susceptibility has increased in the study area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.