Abstract

Understanding the CO2 emission characteristics and key mitigation pathways of intercity passenger transport is crucial for achieving sustainable development in the transport system. Using origin-destination data on travel between city pairs by various transportation modes, we employ the life cycle assessment (LCA) method to estimate route-level CO2 emissions from intercity multimodal passenger transport corridors, considering infrastructure construction and vehicle operation phases. Subsequently, a sensitivity analysis is conducted to assess the impact of 39 parameters associated with the construction phase, operation phase, and transportation modes on CO2 emissions from corridors. Trend analysis is employed to explore the future emission mitigation potential for the parameters that have the most significant impact on corridor emissions. Four intercity multimodal passenger corridors in China are selected as case studies. Results indicate that the CO2 emissions per passenger-kilometer from these corridors exhibit an approximate negative linear relationship with corridor lengths. The proportion of construction-related CO2 emission intensity of various intercity passenger transport modes varies significantly, ranging from 2.5 to 32.9%. In the medium term, effective emission-mitigation strategies should focus on decreasing private car gasoline consumption in three corridors under 200km in length, as well as decreasing private car gasoline consumption and promoting clean electricity in the Xi'an-Yan'an corridor. In the long term, efforts should be placed on increasing electric private car share and promoting clean electricity. This study lays a crucial foundation for the refined management of CO2 emissions from future intercity passenger transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.