Abstract

Effective monitoring and early warning of gearbox operating status are of great significance to the operation and maintenance (O&M) of offshore wind turbines (WTs). This study proposes a normal behaviour modelling (NBM) method based on the spatial-temporal attention module and the gated recurrent unit (GRU), for the condition monitoring of offshore WT gearboxes. The proposed method has a superior performance by extracting the spatial and temporal features from the supervisory control and data acquisition (SCADA) system, and also has the unique advantage of model interpretability. Specifically, in the NBM training stage, the spatial features of offshore wind farm SCADA data are extracted by the spatial attention module firstly. Then, the temporal features of the spatial feature sequences above are extracted and fused by the GRU network. Afterwards, the temporal attention module is applied to strengthen the expression of key time points. In the NBM testing stage, the output residual between the predicted and the measured values is calculated and monitored by the exponential weighted moving average (EWMA) control chart. Finally, the effectiveness and superiority of the proposed NBM method are verified by detailed simulations on the Donghai Bridge offshore wind farm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.