Abstract
Push–pull technology (PPT) integrates maize with the legume fodder Desmodium sp. and the border crop Brachiaria sp., aiming to enhance maize production in Rwanda. Despite its potential, the adoption of complementary soil management practices (SMP), vital for PPT’s success, remains low. This study employs spatial econometric methods to evaluate the determinants of SMP adoption and the interdependencies in decision-making among PPT-practicing farmers. We constructed a spatial weight matrix based on a global Moran’s I index and identified optimal model parameters through principal component analysis. Utilizing a spatial Durbin probit model (SDPM), we assessed the spatial interdependence of SMP adoption decisions among maize farmers. Our findings reveal significant spatial dependence in SMP adoption within a 1.962 km radius, with improved seed usage, household income, yield, farmer group membership and size of land cultivated being key factors positively influencing adoption. We propose a “nonequilibrium promotion strategy” to enhance SMP adoption, emphasizing the establishment of pilot regions to broaden outreach. Additionally, fostering technical training and selecting farmers with adequate resources as demonstration leaders can enhance spatial spillover effects. This research provides insights for developing policies to scale up push–pull technology in Rwanda and across Sub-Saharan Africa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have