Abstract
Impairment of rivers by elevated phosphorus (P) concentration is an issue often studied at outlets of mesoscale catchments. Our objective was to evaluate within-catchment spatio-temporal processes along connected reaches to understand processes of internal P loading associated with sediment input, accumulations in channels and sediment-water column P exchange. Our overall hypothesis was that heterogeneous sediment residence within the channel of a 52 km2 mixed land cover catchment resulted in key zones for sediment-water P exchange. We evaluated the channel network through ground-survey, spatial data methods establishing connectivity and energy gradients. This gave a background to understand sampling of sediments and P release/uptake to the water column using 90 s in-situ resuspension isolating a portion of streambed over five sets of three-location transects in May (spring storms, recent active erosion) and September (summer low flow, longer sediment residence). Simple transect position models (top, mid, bottom) predicted increased sediment resuspension yields and P contents in lower settings. Sediment P release following resuspension were mean (and range) 0.5 (−0.8 to 1.8) and 0.5 (−2.5 to 3.6) mg soluble reactive P/m2 bed in May and September, respectively, strengthening generally down the transects but inconsistently. Relationships (log form) showed a steepening rise in fine sediments, P content, background and disturbance-released dissolved P, with specific stream power < 40 W/m2. In-situ methods showed sediments dominantly (12 cases May, 13 cases Sep) as P sources capable of influencing dissolved P concentrations and with potential explanation that heterogeneous locations of internal P loading influence the systems longer-term observed P trends. Combining channel network, stream power assessment and in-situ sorption studies improved the understanding of influential zones of sediment-water P exchange within this mesoscale catchment. Such methods have potential to inform P model development and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.