Abstract
Red fox, Vulpes vulpes, is a globally distributed species characterized by its high adaptability to diverse habitats and a broad range of food resources. This remarkable adaptability has allowed the red fox to thrive in various environments, from urban areas to remote wilderness. In this study, we used a set of microsatellite markers for the comparative genetic analysis of red fox populations from two countries. We included populations from the Eastern Alps and the northern Dinaric Mountains in Slovenia, as well as the Central Dinaric Mountains in Bosnia and Herzegovina. We successfully isolated DNA and genotyped 118 red fox samples. Our analyses, which included Bayesian clustering techniques, revealed a weak genetic differentiation among the studied populations. However, it is noteworthy that statistically significant differences in estimates of genetic differentiation were only apparent when comparing the populations between the two countries. Further spatial genetic clustering analyses provided additional insights, unveiling a differentiation into four genetic clusters. These clusters comprised two distinct groups in Bosnia and Herzegovina and two in Slovenia. This pattern of differentiation suggests that isolation by distance is a key factor influencing the genetic structure of the red fox in this studied region. Additionally, our findings highlighted that populations from the Alps and northern Dinaric Mountains exhibit higher genetic diversity and observed heterozygosity compared to their counterparts in the Central Dinaric Mountains. The genetic diversity is also notable when compared to other European red fox populations. Studying genetic diversity is crucial for the resilience and adaptability of populations, ensuring their survival amid environmental changes and human-induced pressures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have