Abstract
Background Sarcoptic mange is a skin disease caused by the contagious ectoparasite Sarcoptes scabiei, capable of suppressing and extirpating wild canid populations. Starting in 2015, we observed a multi-year epizootic of sarcoptic mange affecting a red fox (Vulpes vulpes) population on Fire Island, NY, USA. We explored the ecological factors that contributed to the spread of sarcoptic mange and characterized the epizootic in a landscape where red foxes are geographically constrained.MethodsWe tested for the presence of S. scabiei DNA in skin samples collected from deceased red foxes with lesions visibly consistent with sarcoptic mange disease. We deployed 96–100 remote trail camera stations each year to capture red fox occurrences and used generalized linear mixed-effects models to assess the affects of red fox ecology, human and other wildlife activity, and island geography on the frequency of detecting diseased red foxes. We rated the extent of visual lesions in diseased individuals and mapped the severity and variability of the sarcoptic mange disease.ResultsSkin samples that we analyzed demonstrated 99.8% similarity to S. scabiei sequences in GenBank. Our top-ranked model (weight = 0.94) showed that diseased red foxes were detected more frequently close to roadways, close to territories of other diseased red foxes, away from human shelters, and in areas with more mammal activity. There was no evidence that detection rates in humans and their dogs or distance to the nearest red fox den explained the detection rates of diseased red foxes. Although detected infrequently, we observed the most severe signs of sarcoptic mange at the periphery of residential villages. The spread of visual signs of the disease was approximately 7.3 ha/week in 2015 and 12.1 ha/week in 2017.ConclusionsWe quantified two separate outbreaks of sarcoptic mange disease that occurred > 40 km apart and were separated by a year. Sarcoptic mange revealed an unfettered spread across the red fox population. The transmission of S. scabiei mites in this system was likely driven by red fox behaviors and contact between individuals, in line with previous studies. Sarcoptic mange is likely an important contributor to red fox population dynamics within barrier island systems.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.