Abstract
The behavior at criticality of spatial SIR epidemic models in dimensions two and three is investigated. In these models, finite populations of size N are situated at the sites of the integer lattice, and infectious contacts are limited to individuals at the same or at neighboring sites. Susceptible individuals, once infected, remain contagious for one unit of time and then recover, after which they are immune to further infection. It is shown that the measure-valued processes associated with these epidemics, suitably scaled, converge, in the large-N limit, either to a standard Dawson–Watanabe process (super-Brownian motion) or to a Dawson–Watanabe process with location-dependent killing, depending on the size of the the initially infected set. A key element of the argument is a proof of Adler’s 1993 conjecture that the local time processes associated with branching random walks converge to the local time density process associated with the limiting super-Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.