Abstract
Historical records of childhood disease incidence reveal complex dynamics. For measles, a simple model has indicated that epidemic patterns represent attractors of a nonlinear dynamic system and that transitions between different attractors are driven by slow changes in birth rates and vaccination levels. The same analysis can explain the main features of chickenpox dynamics, but fails for rubella and whooping cough. We show that an additional (perturbative) analysis of the model, together with knowledge of the population size in question, can account for all the observed incidence patterns by predicting how stochastically sustained transient dynamics should be manifested in these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.