Abstract
AbstractCoastal ecosystems are dependent on terrestrial freshwater export which is affected by both climate trends and natural climate variability. However, the relative role of these factors is not clear. Here, both climate trends and internal climate variabilities at different time scales are related to variations in terrestrial freshwater export into the eastern United States (U.S.) coastal region. For the recent 35‐year period, the intensified hydro‐meteorological processes (annual precipitation or evapotranspiration) may explain the observed streamflow variability in the northeast. However, in the southeast, streamflow is positively correlated with climate variability induced by the Pacific Ocean conditions (El Nino‐Southern Oscillation [ENSO] and Pacific Decadal Oscillation) rather than Atlantic Ocean conditions (Atlantic Multi‐decadal Oscillation and North Atlantic Oscillation). The centroid location for volume of terrestrial freshwater export integrated along the eastern U.S. has a positive temporal trend and is negatively correlated with ENSO conditions, suggesting the northward trend in freshwater export to U.S. eastern coast may be disturbed by the natural climate variability, especially ENSO conditions, i.e., the center of freshwater mass moves southward (northward) during El Nino (La Nina) years. The results indicate the spatial and temporal variations in freshwater export from the eastern U.S. are affected by both climate change and inter‐annual climate variability during the recent 35‐year period (1980‐2014).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have