Abstract
The objective of this study is to find out the spatial and temporal variability of the dry and wet spells in Greece, during the period 1958–2007. The meteorological data with respect to daily precipitation totals were acquired from 27 meteorological stations of the Hellenic National Meteorological Service, which are uniformly distributed over the country. The dry spells concern consecutive dry days (CDD); the largest number of consecutive days with daily precipitation amount less than 1 mm, within a year. The wet spells concern consecutive wet days (CWD); the largest number of consecutive days with daily precipitation amount more than or equal to 1 mm, within a year, as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), jointly sponsored by the Commission for Climatology (CCl) of the World Meteorological Organization's (WMO) World Climate Data and Monitoring Programme (WCDMP), the Climate Variability and Predictability (CLIVAR) Programme of the World Climate Research Programme (WCRP) and the Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM). As results from the analysis, the spatial distributions of the mean annual CDD and the mean annual CWD along with their trends, within the examined period, are presented. The findings indicate that CDD obtain maxima in the Cyclades Islands and the southeastern Aegean Sea, while minima are found in the northwestern Greece. On the contrary, the longest CWD are observed in western Greece and western part of Crete Island and the shortest in the eastern continental Greece and in the majority of the Aegean Sea. On an annual basis, the temporal variability of CWD shows statistically significant (confidence level of 95%) negative trends, mainly in the western region of Greece, while insignificant positive trends for CDD appear almost all over the country with emphasis in the southeastern region. Finally, in order to interpret the drier and wetter periods within the examined period, the 850 hPa and the 500 hPa geopotential height (m) composites of the anomalies from 1958–1996 climatological normal (clino), are analysed using the National Centers for Environmental Prediction (NCEP) reanalysis data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.