Abstract

Successive approximation techniques are effective approaches to solve the Hamilton–Jacobi–Bellman (HJB)/Hamilton–Jacobi–Isaacs (HJI) equations in nonlinear H2 and H∞ optimal control problems (OCPs), but residual errors in the solving process may destroy its convergence property, and related numerical methods also pose computational burden and difficulties. In this paper, the HJB/HJI partial differential equations (PDEs) for infinite-horizon nonlinear H2 and H∞ OCPs are handled in a unified formulation, and a sparse successive approximation method is proposed. Taking advantage of successive approximation techniques, the nonlinear HJB/HJI PDEs are transformed into sequences of easily solvable linear PDEs, to which the solutions can be computed point-wise by handling simple initial value problems. Extra constraints are also incorporated in the solving process to guarantee the convergence under residual errors. The sparse grid based collocation points and basis functions are then employed to enable efficient numerical implementation. The performance of the proposed method is also numerically demonstrated in simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.