Abstract
According to the AdS/CFT correspondence, certain quantum many-body systems in d-dimensions are equivalent to gravitational theories in (d+1)-dimensional asymptotically anti–de Sitter (AdS) spacetimes. When a massless particle is sent from the AdS boundary to the bulk curved spacetime, it reaches another point of the boundary after a time lag. In the dual quantum system, it should appear as if quasiparticles have been transferred between two separated points. We theoretically demonstrate that this phenomenon, which we call “spacetime-localized response”, is actually observed in the dynamics of the one-dimensional transverse-field Ising model near the quantum critical point. This result suggests that, if we can realize a holographic spin system in a laboratory, the experimental probing of the emergent extra dimension is possible by applying a designed stimulus to a quantum many-body system, which is holographically equivalent to sending a massless particle through the higher-dimensional curved bulk geometry. We also discuss possible experimental realizations using Rydberg atoms in an optical tweezers array. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.