Abstract

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focusing specifically on a system of ^{87}Rb atoms, we show that the effects of the multibody interactions can be maximized via a tailored dressed potential within a trapping frequency range of the order of a few hundred kilohertz and for temperatures corresponding to a >90% occupation of the atomic vibrational ground state. These parameters, as well as the multibody induced timescales, are compatible with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multibody interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call