Abstract
The Lagrangian formulation of classical field theories and, in particular, general relativity leads to a coordinate-free, fully covariant analysis of these constrained systems. This paper applies multisymplectic techniques to obtain the analysis of Palatini and self-dual gravity theories as constrained systems, which have been studied so far in the Hamiltonian formalism. The constraint equations are derived while paying attention to boundary terms, and the Hamiltonian constraint turns out to be linear in the multimomenta. The equivalence with Ashtekar’s formalism is also established. The whole constraint analysis, however, remains covariant in that the multimomentum map is evaluated onany space-like hypersurface. This study is motivated by the non-perturbative quantization programme of general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.