Abstract
BackgroundSurrogate solutions and surrogate models for complex problems in many fields of science and engineering represent an important recent research line towards the construction of the best trade-off between modeling reliability and computational efficiency. Among surrogate models, hierarchical model (HiMod) reduction provides an effective approach for phenomena characterized by a dominant direction in their dynamics. HiMod approach obtains 1D models naturally enhanced by the inclusion of the effect of the transverse dynamics. MethodsHiMod reduction couples a finite element approximation along the mainstream with a locally tunable modal representation of the transverse dynamics. In particular, we focus on the pointwise HiMod reduction strategy, where the modal tuning is performed on each finite element node. We formalize the pointwise HiMod approach in an unsteady setting, by resorting to a model discontinuous in time, continuous and hierarchically reduced in space (c[M(mathbf{M})G(s)]-dG(q) approximation). The selection of the modal distribution and of the space–time discretization is automatically performed via an adaptive procedure based on an a posteriori analysis of the global error. The final outcome of this procedure is a table, named HiMod lookup diagram, that sets the time partition and, for each time interval, the corresponding 1D finite element mesh together with the associated modal distribution.Results The results of the numerical verification confirm the robustness of the proposed adaptive procedure in terms of accuracy, sensitivity with respect to the goal quantity and the boundary conditions, and the computational saving. Finally, the validation results in the groundwater experimental setting are promising.Conclusion The extension of the HiMod reduction to an unsteady framework represents a crucial step with a view to practical engineering applications. Moreover, the results of the validation phase confirm that HiMod approximation is a viable approach.
Highlights
Surrogate solutions and surrogate models for complex problems in many fields of science and engineering represent an important recent research line towards the construction of the best trade-off between modeling reliability and computational efficiency
Surrogate solutions are generally formalized with a reduction of the size of the finite dimensional solution, as in the reduced basis approach [2], or in the proper orthogonal decomposition (POD) [3] and proper generalized decomposition (PGD) methods [4, 5]
We focus on the pointwise hierarchical model (HiMod) reduction strategy proposed in [12], where the modal tuning is performed on the finite element nodes
Summary
HiMod reduction couples a finite element approximation along the mainstream with a locally tunable modal representation of the transverse dynamics. We focus on the pointwise HiMod reduction strategy, where the modal tuning is performed on each finite element node. We formalize the pointwise HiMod approach in an unsteady setting, by resorting to a model discontinuous in time, continuous and hierarchically reduced in space (c[M(M)G(s)]-dG(q) approximation). The selection of the modal distribution and of the space–time discretization is automatically performed via an adaptive procedure based on an a posteriori analysis of the global error. The final outcome of this procedure is a table, named HiMod lookup diagram, that sets the time partition and, for each time interval, the corresponding 1D finite element mesh together with the associated modal distribution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced Modeling and Simulation in Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.