Abstract

BackgroundPodoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells.ResultsWe cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA methyltransferase inhibitor 5-azaCdR in combination with trichostatin A (TSA) downregulated podoplanin mRNA levels in MG63 cells, and region-specific in vitro methylation of the distal promoter suggested that DNA methylation rather enhanced than hindered PDPN transcription in both cell types.ConclusionThese data establish that in human osteoblast-like MG63 cells, Sp1 and Sp3 stimulate basal PDPN transcription in a concerted, yet independent manner, whereas Saos-2 cells lack sufficient nuclear Sp protein amounts for transcriptional activation. Moreover, a highly methylated chromatin conformation of the distal promoter region confers cell-type specific podoplanin upregulation versus Saos-2 cells.

Highlights

  • Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes

  • The podoplanin mRNA was identified for the first time in the murine osteoblastic cell line MC3T3-E1 [1], and later it was found to be expressed in murine colon carcinoma and melanoma cells [2], in the stromal cells of peripheral lymphoid tissue [3], in skeletal muscle, heart, placenta, lung, skin, bone and brain [4,5]

  • Podoplanin mRNA expression in the human osteoblastic cell lines MG63 and Saos-2 To identify cell lines which are positive for podoplanin expression, reverse transcription PCRs were performed with a series of human cell lines of different origin (Fig. 1A)

Read more

Summary

Introduction

Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Podoplanin represents a type I integral membrane protein of the mucin-type family. Its 162 aa protein core is extensively O-glycosylated, which results in a doubling of the molecular weight up to 45 kDa. The podoplanin mRNA was identified for the first time in the murine osteoblastic cell line MC3T3-E1 [1], and later it was found to be expressed in murine colon carcinoma and melanoma cells [2], in the stromal cells of peripheral lymphoid tissue [3], in skeletal muscle, heart, placenta, lung, skin, bone and brain [4,5]. The widespread localization of podoplanin has lead to a multiplicity of synonyms for its expression forms of human, murine and rat origin: murine OTS-8 [1], gp38 [3], T1α [11], PA2.26 antigen [7], RANDAM-2 [8] or Aggrus [12], rat E11 antigen [4] or RTI40 [13], and human gp36 [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.