Abstract

Whether an extracellular component of periodontal-disease-causing bacteria induces apoptotic cell death in bone-related cells is unknown. To study the effects on osteoblasts of extracts obtained from sonicated Actinobacillus actinomycetemcomitans and Prevotella intermedia, we cultured human osteoblastic cell lines MG63 and Saos-2 cells and mouse osteoblastic cell line MC3T3-E1 cells in the presence of such extracts. The addition of the extracts from Actinobacillus actinomycetemcomitans induced cell death in MG63 cells in a dose- and time-dependent fashion over the concentration range of 0.1 to 10 microg/mL. By contrast, the extracts from Prevotella intermedia did not induce cell death in these cells, even in the presence of 10 microg/mL protein. By using the Hoechst 33342 staining technique, we observed marked nuclear condensation and fragmentation of chromatin in MG63 cells treated with the extracts of Actinobacillus actinomycetemcomitans. DNA ladder formation, a hallmark of apoptosis, also was detected in MG63 cells treated with extracts from Actinobacillus actinomycetemcomitans. In MG63 cells, DNA ladder formation was dose-dependent, with a maximal effect at a concentration of 10 microg/mL, and time-dependent, from 12 to 48 hrs. However, the extracts from Prevotella intermedia did not induce DNA fragmentation in MG63, Saos-2, or MC3T3-E1 cells. The extracts from Actinobacillus actinomycetemcomitans did not induce cell death and DNA fragmentation in Saos-2 and MC3T3-E1 cells. Sonicated extracts of Actinobacillus actinomycetemcomitans that had been treated with heat and trypsin did not induce DNA ladder formation in MG63 cells, suggesting that the apoptosis-inducing factors are proteinaceous. Cycloheximide prevented the Actinobacillus actinomycetemcomitans-induced DNA ladder formation in MG63 cells in a dose-dependent fashion, suggesting that new gene transcription and protein synthesis are regulated for Actinobacillus actinomycetemcomitans-induced apoptosis in MG63 cells. Our results indicate that apoptosis in alveolar bone cells induced by Actinobacillus actinomycetemcomitans plays an important role in periodontal diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call