Abstract

In a previous study, we demonstrated that the protein phosphatase inhibitors, okadaic acid and calyculin A, induced apoptosis in human osteosarcoma cell lines, Saos-2 and MG63 cells. In the present study, to determine if new gene transcription and protein synthesis are required for okadaic acid-induced apoptosis in Saos-2 and MG63 cells, the cells were treated for 48h with varying concentrations of the inhibitors of protein or RNA synthesis, i.e., cycloheximide, actinomycin D, and puromycin, in the presence of a fixed dose of okadaic acid. All these reagents in different concentrations prevented the okadaic acid-induced apoptosis in MG63 cells in a dose-dependent fashion. The same concentrations of cycloheximide, actinomycin D, or puromycin alone did not induce any apoptotic features in MG63 cells. However, not all the aforementioned reagents affected okadaic acid-induced apoptosis in Saos-2 cells. Okadaic acid-induced and cycloheximide-prevented apoptosis was shown by phase-contrast microscopy, WST-1 assay, direct visualization of nuclear condensation and fragmentation of chromatin, and the characteristic DNA ladder formation on agarose gel electrophoresis. The present results indicate that the induction of new cell death genes and ongoing protein synthesis may have a role in okadaic acid-induced apoptosis in MG63 cells and that such proteins are not required in Saos-2 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.