Abstract

Abstract The preservation process of organic matter (OM) in estuarine environments determines the recycling and sinking of nutrients. This process requires the identification of sources, degradation states and the main processes affecting OM transformations. Unfortunately, our understandingof the sources, degradation and factors affecting OM distribution in tropical rivers experiencing strong seasonality and monsoonal influence is still limited. This study examined the sources, degradation and factors affecting OM distribution along the Narmada River and its estuary during different seasons. Surface waters and sediments were analyzed seasonally for selected physico-chemical parameters and bulk compositions of sediments, together with amino acids (AA, including the bacterial biomarker, D-AA). The sources of OM were soils containing detrital terrestrial plant material, with C4 and C3 plants dominating the estuarine and riverine stations, respectively. The other sources of OM were in-situ production, together with bacteria and their remnants. Strong seasonality and monsoonal conditions control the sources and distribution of OM in the river. Higher concentrations of total hydrolysable amino acids (THAA) were observed in riverine stations, suggesting the presence of relatively fresher OM. The lower OC:SA ratios recorded in the estuarine sediments indicated a limited OM preservation in the studied river. Positive degradation index (DI) values were obtained during the pre-monsoon season, suggesting seasonal changes in OM diagenesis. Physical (strong tidal currents, rainfall, reduced water flow due to seasonal variations and shallow water depth within the estuary) and geochemical (mineral surface adsorption processes) factors control the distribution and transport of OM. Taken together, the sources, preservation and diagenesis of terrestrial OM along the Narmada River was controlled differentially by the strong seasonal variability of the region. Thus, under variable temporal conditions, tropical estuaries and rivers form important realms for examining, determining, evaluating and assessing OM in order to better interpret nutrient budgets of the seas and oceans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.