Abstract

Riverine supply of largely terrestrial carbon is important to the carbon cycle chemistry of the oceans. Along a river-ocean continuum, sedimentary organic matter composition and distribution can provide insights to the balance of terrestrial input and in situ production of an estuary. In the Yangtze River estuary (YRE), this balance is especially important to understand as human impacts and climate change continue to modify processes along the continuum. Here we discuss the sources and spatio-temporal distributions of organic matter in the coastal ocean surface sediments and how environmental factors have affected changes there. The isotopic compositions (δ13C and δ15N), total organic carbon (TOC), and total nitrogen (TN) of surface sediments were investigated along with sediment grain size and bottom water temperature, salinity, and total suspended matter. Evidence suggests that fine sedimentary grain size, bottom water temperature, and the circulation dynamics of water masses such as Changjiang Diluted Water (CDW) and Taiwan Warm Current (TWC) were the main factors affecting spatial and temporal distributions, with organic matter concentrations in autumn showing higher than that in spring and nearshore areas higher than offshore. An isotopic-based two end-member mixing model suggests that terrigenous inputs were the main source (about 53%) of organic matter in the YRE, followed by autochthonous marine organic matter, in both seasons. Terrestrial organic matter distribution, controlled by the CDW, decreased seaward from the mouth, as expected, and the proportion of terrestrial organic carbon increased in autumn compared to spring. Intrusions of the TWC water likely contributed to the increase of marine components in a tongue-shaped area during both seasons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.