Abstract

Abstract This review presents both classical and new results of the theory of sound propagation in media with random inhomogeneities of sound speed, density and medium velocity (mainly in the atmosphere and ocean). An equation for a sound wave in a moving inhomogeneous medium is presented, which has a wider range of applicability than those used before. Starting from this equation, the statistical characteristics of the sound field in a moving random medium are calculated using Born-approximation, ray, Rytov and parabolic-equation methods, and the theory of multiple scattering. The results obtained show, in particular, that certain equations previously widely used in the theory of sound propagation in moving random media must now be revised. The theory presented can be used not only to calculate the statistical characteristics of sound waves in the turbulent atmosphere or ocean but also to solve inverse problems and develop new remote-sensing methods. A number of practical problems of sound propagation in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.