Abstract

The surfactant-degrading biocatalyst Pseudomonas C12B was immobilized by covalent linking on silanized inorganic supports and by physical entrapment of cells within reticulated polyurethane foam. Both immobilized biocatalysts have been shown to be appropriate for the effective primary biodegradation of the anionic surfactants sodium dodecyl sulphate (SDS), dodecylbenzene sulphonic acid (DBS), dioctyl sulphosuccinate (DOSS) and dihexyl sulphosuccinate (DHSS). The overall surfactant removal from water by cells entrapped in reticulated polyurethane foam exhibits a biphasic process, a rapid sorption step of the surfactant onto the cell-loaded support and the intrinsic primary biodegradation slower step, both acting cooperatively. The optimization of variables for the adsorption and the biodegradation processes (flow rate, particle size, substrate concentration) have been studied. Sorption isotherms for the surfactants on reticulated polyurethane foam have been established as type II of the Brunauer, Deming, Deming and Teller (BDDT) classification. The kinetics of the primary biodegradation of SDS by cells covalent linked on sepiolite treated with 3-aminopropyl triethoxysilane (APTS) were found to be first-order. In this case, surfactant adsorption does not exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.