Abstract

Cold-active lipases have emerged as an important class of biocatalysts for chemical and food industries due to their high efficiency at low temperature and long-chain substrate preference. In an effort to explore the feasibility of converting a cold-active esterase from Monascus ruber (Lip10) into a cold-active lipase, an Y264F variant in which the salt bridge between K243 and Y264 was disrupted has been constructed and characterized. The interfacial kinetic parameter, Kmapp for pNP-laurate (C12) and pNP-palmitate (C16), of Lip10 esterase was 4.2 and 5.7 times higher than those of the Y264F variant, respectively. Substrate specificity of the Y264F variant changed from shot-chain length substrate to medium- and long-chain length substrates, indicating that the Y264F variant turned into a lipase. Meanwhile, the Y264F variant displayed 48.6% maximum activity at 4°C and 3.2kcal/mol activation energy in the range of 5–30°C, suggesting that it was still cold-active. Based on analysis of the structure-function relationships, it suggests that the shape of substrate channel controlled by the conserved salt bridge was very important for the substrate specificity. This study provides a way to alter the substrate preference of the Lip10 esterase as well as new insight into the structural basis of esterase substrate specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call