Abstract
The effect of clay mineral composition on Cs adsorption behavior of silt and clay fractions (SC-fractions) of soil was investigated. Surface soil samples were collected within 2 km of Kori and Wolsong nuclear power plants in South Korea, and SC-fractions (<20 μm) were separated. The physicochemical properties of SC-fractions and types of clay minerals contained in the SC-fractions were analyzed. The cesium adsorption capacity of the SC-fractions, and affinity between the SC-fractions and Cs, were investigated by isothermal adsorption analysis using the dual-site Langmuir adsorption model. To understand selective adsorption of Cs, the radiocesium interception potential and distribution coefficient of the SC-fractions were analyzed in the presence or absence of competing ions. The radiocesium distribution coefficient of the SC-fractions showed a trend similar to that of the Langmuir sorption coefficient of high-affinity binding sites for Cs in the SC-fractions. The SC-fractions of Kori soils that contain only non-expandable clay minerals including highly weathered mica had low Cs adsorption capacity. However, the SC-fractions of Kori soils showed higher Cs adsorption selectivity compared to the SC-fractions of Wolsong soils containing expandable clay minerals and micaceous mineral with a low degree of weathering. It is predicted that the highly weathered micas have high affinity to Cs, and such clay minerals contribute the most to the adsorption process in dilute solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.