Abstract
Finite-time stability of stochastic fractional-order delay differential equations is researched here. Firstly, we derive the equivalent form of the considered system by using the Laplace transformation and its inverse. Subsequently, by defining the maximum weighted norm in Banach space and using the principle of contraction mapping, we prove that the solution of researched system is unique. What's more, by virtue of Henry-Grönwall delay inequality and interval translation, we derive the criterion of finite-time stability for the system with and without impulses, respectively. Finally, as a verification, examples are provided to expound the correctness of the deduced results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.